Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.

Identifieur interne : 000567 ( Main/Exploration ); précédent : 000566; suivant : 000568

Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.

Auteurs : Benoît Lacroix [États-Unis] ; Vitaly Citovsky

Source :

RBID : pubmed:22028781

Descripteurs français

English descriptors

Abstract

VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.

DOI: 10.1371/journal.pone.0025578
PubMed: 22028781
PubMed Central: PMC3196495


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.</title>
<author>
<name sortKey="Lacroix, Benoit" sort="Lacroix, Benoit" uniqKey="Lacroix B" first="Benoît" last="Lacroix">Benoît Lacroix</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America. blacroix@notes.cc.sunysb.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Citovsky, Vitaly" sort="Citovsky, Vitaly" uniqKey="Citovsky V" first="Vitaly" last="Citovsky">Vitaly Citovsky</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22028781</idno>
<idno type="pmid">22028781</idno>
<idno type="doi">10.1371/journal.pone.0025578</idno>
<idno type="pmc">PMC3196495</idno>
<idno type="wicri:Area/Main/Corpus">000543</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000543</idno>
<idno type="wicri:Area/Main/Curation">000543</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000543</idno>
<idno type="wicri:Area/Main/Exploration">000543</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.</title>
<author>
<name sortKey="Lacroix, Benoit" sort="Lacroix, Benoit" uniqKey="Lacroix B" first="Benoît" last="Lacroix">Benoît Lacroix</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America. blacroix@notes.cc.sunysb.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Citovsky, Vitaly" sort="Citovsky, Vitaly" uniqKey="Citovsky V" first="Vitaly" last="Citovsky">Vitaly Citovsky</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (cytology)</term>
<term>Agrobacterium (genetics)</term>
<term>Agrobacterium (metabolism)</term>
<term>Agrobacterium (physiology)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Beta vulgaris (genetics)</term>
<term>Beta vulgaris (microbiology)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Extracellular Space (metabolism)</term>
<term>Host-Pathogen Interactions (genetics)</term>
<term>Intracellular Space (metabolism)</term>
<term>Protein Transport (MeSH)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (microbiology)</term>
<term>Transformation, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (génétique)</term>
<term>Agrobacterium (cytologie)</term>
<term>Agrobacterium (génétique)</term>
<term>Agrobacterium (métabolisme)</term>
<term>Agrobacterium (physiologie)</term>
<term>Beta vulgaris (génétique)</term>
<term>Beta vulgaris (microbiologie)</term>
<term>Espace extracellulaire (métabolisme)</term>
<term>Espace intracellulaire (métabolisme)</term>
<term>Interactions hôte-pathogène (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Tabac (génétique)</term>
<term>Tabac (microbiologie)</term>
<term>Transformation génétique (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Agrobacterium</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Agrobacterium</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium</term>
<term>Beta vulgaris</term>
<term>Host-Pathogen Interactions</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN bactérien</term>
<term>Agrobacterium</term>
<term>Beta vulgaris</term>
<term>Interactions hôte-pathogène</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Agrobacterium</term>
<term>Extracellular Space</term>
<term>Intracellular Space</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Beta vulgaris</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Beta vulgaris</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Agrobacterium</term>
<term>Espace extracellulaire</term>
<term>Espace intracellulaire</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Agrobacterium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Agrobacterium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Protein Transport</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Transformation génétique</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22028781</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.</ArticleTitle>
<Pagination>
<MedlinePgn>e25578</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0025578</ELocationID>
<Abstract>
<AbstractText>VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lacroix</LastName>
<ForeName>Benoît</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America. blacroix@notes.cc.sunysb.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Citovsky</LastName>
<ForeName>Vitaly</ForeName>
<Initials>V</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>10</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C036483">T-DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027461" MajorTopicYN="N">Beta vulgaris</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005110" MajorTopicYN="N">Extracellular Space</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042541" MajorTopicYN="N">Intracellular Space</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="Y">Transformation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22028781</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0025578</ArticleId>
<ArticleId IdType="pii">PONE-D-11-11682</ArticleId>
<ArticleId IdType="pmc">PMC3196495</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:177-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Mar;57(4):503-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(7):1565-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17585298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Sep;181(18):5563-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1613-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8643679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2007 Nov;153(Pt 11):3766-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17975085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Jan 26;24(2):428-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Jun;176(12):3646-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8206843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1993 Sep;12(11):621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24201875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15272-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8986800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 Mar;190(5):1595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18165307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2008 Sep;16(9):409-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18706815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1986 Jul;5(7):1445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3017694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Sep;18(9):1002-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16167770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Jan;9(1):9-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jun;7(6):251-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12049921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Apr;52(1):81-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15049812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Feb;86(4):1193-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2919168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Aug;10(8):357-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15993643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2010;48:45-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20337518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1985 Apr;4(4):891-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2990912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Jul;40(4):711-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10480394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Oct 18;449(7164):862-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17943123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2006 Jan;22(1):29-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16289425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 May;8(5):873-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8672885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):1113-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15181213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Nov 11;1694(1-3):219-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15546668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:451-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jan;65(2):295-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21223393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1984 Feb 3;223(4635):496-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17781445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12177443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11172043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2003 Mar;67(1):16-37, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12626681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15429-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1985 Jan;161(1):402-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2857162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2009 Dec;73(4):775-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19946141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Oct 21;280(42):35554-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16123046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1999 Apr;261(3):429-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10323222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):25-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Dec;181(24):7485-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10601205</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Citovsky, Vitaly" sort="Citovsky, Vitaly" uniqKey="Citovsky V" first="Vitaly" last="Citovsky">Vitaly Citovsky</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Lacroix, Benoit" sort="Lacroix, Benoit" uniqKey="Lacroix B" first="Benoît" last="Lacroix">Benoît Lacroix</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000567 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000567 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22028781
   |texte=   Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22028781" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024